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Abstract
We have developed a modified Nagel–Schreckenberg cellular automata model
for describing a conflicting vehicular traffic flow at the intersection of two
streets. No traffic lights control the traffic flow. The approaching cars to the
intersection yield to each other to avoid collision. Closed boundary condition is
applied to the streets. Extensive Monte Carlo simulation is taken into account
to find the model characteristics. In particular, we obtain the fundamental
diagrams and show that the effect of the interaction of two streets can be
regarded as a dynamic impurity located at the intersection point. Our results
suggest that yielding mechanism gives rise to a high total flow throughout the
intersection especially in the low density regime.

PACS numbers: 89.40.−a, 02.50.Ey, 05.40.−a, 05.65.+b

1. Introduction

Modelling the dynamics of vehicular traffic flow has constituted the subject of intensive
research by statistical physics and applied mathematics communities during the past years
[1–5]. In particular, cellular automata approach has provided the possibility of studying
various aspects of these truly non-equilibrium systems which still are of current interest
[6–8]. Besides various theoretical efforts aiming to understand the basic principles governing
the spatial-temporal structure of traffic flow, considerable attempts have been made towards
realistic problems involving optimization of vehicular traffic flow. While the existing results
in the context of highway traffic seem to need further manipulations in order to find
direct applications, researches on city traffic have more feasibility in practical applications
[9–17]. We believe that optimization of traffic flow at a single intersection is a substantial
ingredient for the task of global optimization of city networks [18]. Isolated intersections
are fundamental operating units of complex city networks, and their thorough analysis would
be inevitably advantageous not only for optimization of city networks but also for local
optimization purposes. Recently, physicists have paid notable attention to controlling traffic
flow at intersections and other traffic designations such as roundabouts [19–28]. In this respect,
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Figure 1. Intersection of two uni-directional streets. They intersect each other at halfway.
A closed boundary condition is applied.

our objective in this paper is to study another aspect of conflicting traffic flow at intersections.
In principle, the vehicular flow at the intersection of two roads can be controlled via two
distinctive schemes. In the first scheme, which is appropriate when the density of cars in both
roads are low, the traffic is controlled without traffic lights. In the second scheme, signalized
traffic lights control the flow. In the former scheme, approaching car to the intersection
yields to traffic at the perpendicular direction by adjusting its velocity to a safe value to avoid
collision. According to driving rules, the priority is given to the nearest car to the intersection.
It is evident that this scheme is efficient if the density of cars is low. When the density of cars
increases, this method fails to optimally control the traffic and long queues may form which
gives rise to long delays. At this stage the implementation of the second scheme, i.e. utilizing
traffic lights is unavoidable. Therefore it is a natural and important question to find out under
what circumstances the intersection should be controlled by traffic lights? More concisely,
what is the critical density beyond which the non-signalized schemes begin to fail. In order
to capture the basic features of this problem, we have constructed a cellular automata model
describing the above dynamics. This paper has the following layout. In section 2, the model
is introduced and driving rules are explained. In section 3, the results of the Monte Carlo
simulations are exhibited. Concluding remarks and discussions end the paper in section 4.

2. Description of the problem

We now present our CA model. Consider two perpendicular one-dimensional closed chains
each having L sites. The chains represent urban roads accommodating unidirectional vehicular
traffic flow. They cross each other at the sites i1 = i2 = L

2 on the first and the second chains
respectively. With no loss of generality, we take the direction of traffic flow in the first chain
from south to north and in the second chain from east to west (see figure 1 for illustration). The
discretization of space is such that each car occupies an integer number of cells denoted by
Lcar. The car position is denoted by the location of its head cell. Time elapses in discrete steps
of �t s and velocities take discrete values 0, 1, 2, . . . , vmax in which vmax is the maximum
velocity of cars.
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Figure 2. Two approaching cars to the intersection yield to each other provided their distances to
the crossing point are both less than a safety distance Ds .

To be more specific, at each step of time, the system is characterized by the position and
velocity configurations of cars. The system evolves under the Nagel–Schreckenberg (NS)
dynamics [29]. Let us briefly explain the NS updating rules which synchronously evolve the
system state from time t to t + 1. We denote position, velocity and space gap of a typical
car at timestep t by x(t), v(t) and g(t), respectively. The same quantities for its leading car are
correspondingly denoted by x

(t)
l , v

(t)
l and g

(t)
l . We recall that gap is defined as the distance

between the front bumper of the follower to the rear bumper of its leading. More precisely,
g(t) = xl(t) − x(t) − Lcar. Concerning the above considerations, the following updating
sub-steps evolve the position and the velocity of each car in parallel.

(1) Acceleration:

v(t+1/3) := min(v(t) + 1, vmax).

(2) Velocity adjustment:

v(t+2/3) := min(g(t+1/3), v(t+1/3)).

(3) Random breaking with probability p:

if random < p then v(t+1) := max(v(t+2/3) − 1, 0).

(4) Movement: x(t+1) := x(t) + v(t+1).

The yielding dynamics in the vicinity of the intersection is implemented by introducing
a safety distance Ds . The approaching cars (nearest cars to the crossing point i = L

2 ) should
yield to each other if their distances to the crossing point, denoted by d1 and d2 for the first
and second street, respectively, are both less than the safety distance Ds (see figure 2). In
this case, the movement priority is given to the car which is closer to the crossing point. This
car adjust its velocity as usual with its leading car. In contrast, the further car, which is the
one that should yield, brakes irrespective of its direct gap. The simplest way to take into this
cautionary braking is to adjust the gap with the crossing point itself. This implies that the
yielding car sees the crossing point as a hindrance. In this way, the model is collision-free.
Figure two illustrates the situation.

Let us now specify the physical values of our time and space units. Ignoring the possibility
of existence of long vehicles such as buses, trucks etc, the length of each car is taken to be as
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Figure 3. J1 versus ρ1 for various values of ρ2. Ds = 25 m and Lcar = 5 cells. The road length
is 1350 m.

4.5 m which is the typical bumper-to-bumper distance of cars in a waiting queue. Therefore
the cell length �x is equal to 4.5

Lcar
m. We take the time step �t = 1 s. Furthermore, we adopt

a speed limit of 75 km h−1. The value of vmax is so chosen to give the speed-limit value 75 km
h−1 or equivalently 21 m s−1. In this regard, vmax is given by the integer party of 21×Lcar/4.5.
For instance, for Lcar = 5, vmax equals 23. In addition, each discrete increments of velocity
signifies a value of �v = 4.5

Lcar
m s−1 which is also equivalent to the acceleration. For Lcar = 5,

this gives the comfort acceleration 0.9 m s−2. Moreover, we take the value of random breaking
parameter at p = 0.1. In the following section, the simulation results of the above-described
dynamics are presented.

3. Monte Carlo simulation

The streets sizes are equally taken as L1 = L2 = 1350 m and the system is updated for
106 time steps. After transients, two streets maintain steady-state currents, defined as the
number of vehicles passing from a fixed location per a definite time interval, denoted by J1 and
J2. They are functions of the global densities ρ1 = N1×Lcar

L1
and ρ2 = N2×Lcar

L2
, where N1 and

N2 are the number of vehicles in the first and the second street, respectively. We kept the
global density at a fixed value ρ2 in the second street and varied ρ1. Figure 3 exhibits the
fundamental diagram of the first street, i.e., J1 versus ρ1.

It is observed that for small densities ρ2 up to 0.05, J1 rises to its maximum value, then
it undergoes a short rapid decrease after which a lengthy plateau region, where the current is
independent of ρ1, is formed. Intersection of two chains makes the intersection point appear as
a sitewise dynamical defective site. It is a well-known fact that a local defect can affect the low-
dimensional non-equilibrium systems on a global scale [30–38]. This has been confirmed not
only for simple exclusion process but also for cellular automata models describing vehicular
traffic flow [39, 40]. Analogous to static defects, in our case of dynamical impurity, we
observe that the effect of the sitewise dynamic defect is to form a plateau region ρ ∈ [ρ−, ρ+]
in which � = ρ+ − ρ− is the extension of the plateau region in the fundamental diagram. The
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Figure 4. J2 versus ρ1 for various values of ρ2. Ds = 25 m and Lcar = 5 cells. The road length
is 1350 m.

larger the density in the perpendicular chain is, the more strong is the dynamic defect. For
higher ρ2, the plateau region is wider and the current value is more reduced. After the plateau,
J1 exhibits linear decrease versus ρ1 in the same manner as in the fundamental diagram of
a single road. In this region which corresponds to ρ1 > ρ+ the intersecting road imposes
no particular effect on the first road. Increasing ρ2 beyond 0.05 gives rise to substantial
changes in the fundamental diagram. In contrast to the case ρ2 < 0.05, the abrupt drop of
current after reaching its maximum disappears for ρ2 > 0.05, and J1 reaches its plateau value
without showing any decrease. The length and height of the plateau do not show significant
dependence for ρ2 ∈ [0.05, 0.8]. This marks the efficiency of the non-signalized controlling
mechanism in which the current of each street is highly robust over the density variation in
the perpendicular street. When ρ2 exceeds 0.8, the plateau undergoes changes. Its length
increases whereas its height decreases. We now consider the flow characteristics in the second
street. Although the global density is constant in street 2, its current J2 is affected by density
variations in the first street. In figure 4 we depict the behaviour of J2 versus ρ1.

For each value of ρ2, the current J2 as a function of ρ1 exhibits three regimes. In
the first regime in which ρ1 is small, J2 is a decreasing function of ρ1. Afterwards, J2

reaches a plateau region (second regime) which is approximately extended over the region
ρ1 ∈ [0.1, 0.8]. Eventually, in the third regime, J2 exhibits decreasing behaviour towards zero.
Analogous to J1, the existence of wide plateau regions indicates that street 2 can maintain
a constant flow capacity for a wide range of density variations in the first street. The other
feature is that in fixed ρ1, J2 is an increasing function for small values of ρ2. This is natural
since the current in street 2 has not reached its maximal value. This increment persists up to
ρ2 = 0.05. Beyond that, for each ρ1, J2 saturates. In the plateau region, the saturation value
is slightly above 0.16. The current saturation continues up to ρ2 = 0.8 above which J2 again
starts to decrease. We note that the behaviour depicted in J1 − ρ1 and J2 − ρ1 diagrams are
consistent to each other. Due to the existence of 1 � 2 symmetry, the J2 − ρ2 diagram is
identical to J1 − ρ1 and J1 − ρ2 is identical to J2 − ρ1. In order to find a deeper insight, it
would be illustrative to look at the behaviour of total current Jtot = J1 + J2 as a function of
density in one of the streets. Figure 5 sketches this behaviour.
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Figure 5. Total current Jtot versus ρ1 for various values of ρ2. Ds = 25 m and Lcar = 5 cells.
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Figure 6. J1 versus ρ1 for various Lcar. Global density of the second street is kept fixed at
ρ2 = 0.05.

For ρ2 < 0.05, the maximum of Jtot lies at ρ1 = 0.1. However, for ρ2 > 0.05, the
maximum shifts backward to ρ1 = 0. According to the above graphs, after a short increasing
behaviour, Jtot enters into a lengthy plateau region. Evidently for optimization of traffic one
should maximize the total current Jtot. The existence of a wide plateau region in Jtot suggests
that yielding mechanism can be regarded as an efficient method in the plateau range of density
in the first street. Let us now consider the role of Lcar. The cellular nature of our model permits
us to adjust the cell length �x in such a way to reproduce a reasonable acceleration. Our
simulations demonstrate that currents exhibit significant dependence on �x or equivalently
on Lcar. This is exhibited in figures 6, 7.

While the structure of the fundamental diagram does not qualitatively change, the values
of J1 notably depend on Lcar. For both ρ2 = 0.05 and 0.5, J1 is a decreasing function of Lcar.
The reason is that larger Lcar gives rise to higher acceleration.
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Figure 7. J1 versus ρ1 for various Lcar with ρ2 = 0.5.
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Figure 8. J2 versus ρ1 for various Lcar. ρ2 = 0.05.

Analogous to J1, the dependence of J2 on Lcar is considerable as shown in figures 8, 9.
Variation of Lcar does not lead to change the generic behaviour but rather changes the current
values. Due to the same reason which was explained, smaller Lcar gives higher currents. In
the case Lcar = 1, the transition of J2 from the plateau region to the linear decreasing segment
is much smoother compared to the other values of Lcar greater than 1. Since the currents in the
plateau region do not depend on density, therefore the higher acceleration gives rise to larger
currents.

Finally, we have also examined the effect of varying the safety distance Ds . Our
simulations do not show any significant dependence on Ds . This is due to unrealistic
deceleration in the NS model.
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Figure 9. J2 versus ρ1 for various Lcar. The density is kept fixed in the second street at ρ2 = 0.5.

4. Summary and concluding remarks

We have investigated the flow characteristics of a non-signalized intersection by developing
a Nagel–Schreckenberg cellular automata model. In particular, we have obtained the
fundamental diagrams in both streets. Our findings show yielding of cars upon reaching
the intersection gives rise to formation of plateau regions in the fundamental diagrams. This
is reminiscent of the conventional role of a single impurity in the one dimensional out of
equilibrium systems. The performance of non-signalized controlling mechanism is especially
efficient when the car density is considerably low in both streets. The existence of wide
plateau region in the total system current shows the robustness of the controlling scheme to the
density fluctuations and offers an optimal method for controlling the traffic at low densities.
Our CA model allows for varying space and time grids. By their appropriate adjusting, we
are able to reproduce a realistic acceleration. In low densities, the current system exhibits
notable dependence on the values of spatial discretization grid. Finally, we remark that our
approach is open to serious challenges. The crucial point is to model the yielding braking
as realistic as possible. Empirical data are certainly required for this purpose. We expect
the system characteristics undergo substantial changes if realistic yielding declaration is taken
into account.

Acknowledgments

We highly appreciate Kadkhodaa Yaghoub and Sardaar Kaamyaab for their useful help.

References

[1] Kerner B 2004 Physics of Traffic Flow (Berlin: Springer)
[2] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[3] Helbing D 2001 Rev. Mod. Phys. 73 1067
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